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Concluding remarks 

We expect that method A will work best for invariants 
like quintets and higher, since then a lot of correlation 
terms of order N -3/2 c a n  be taken into account. 
Method B is expected to work fine for large m values 
(m ~- N-1/2). We think that a combination of method 
A and method B will give still better results, since 
then the correlation terms that normally appear in 
method A will be boosted. We shall explore this in 
a forthcoming paper. 

Finally, let us notice that one can also use another 
approach for calculating triplet phase invariants; in 
this approach one considers the atomic position vec- 
tors to be fixed and the structure factors to be random 

variables of the reciprocal-lattice vectors. For more 
on this we refer to Hauptman (1985) and Gilmore & 
Hauptman (1985). 
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Abstract 

A model is discussed that is able to give a statistical 
interpretation for the B3,o formula of Karle & Haupt- 
man [Acta Cryst. (1957), 10, 515-524] for the space 
group P1. The main idea is to use a suitable probabil- 
ity measure for the interatomic position vectors and 
to 'linearize' the triplet phase invariant. As a result 
of the model a statistical formula is given using a 
'first neighborhood'  of random variables. 

Introduction 

The B3, o formula of Karle & Hauptman (1957) for 
P1 [and Hauptman & Karle (1958) for P i ]  is well 
known among 'direct-methods' crystallographers. It 
gives the value of the cosine of a triplet phase 
invariant when the structure consists of equal atoms 
and if no 'chance interactions' (Hauptman, 1964) 
occur. Unfortunately, when the number of atoms 
increases, the number of these chance interactions 
(or 'near chance interactions' since we have only a 
finite number of Ek values at our disposal) increases 
also, thereby violating the strict validity of the B3.o 
formula. A lot of research has been undertaken to 
modify the B3.o formula (e.g. Hauptman, 1964; Haupt- 
man, Fisher, Hancock & Norton, 1969; Karle, 1970; 
Fisher, Hancock & Hauptman, 1970). All these 
approaches tried to calculate the exact value of the 
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cosine invariant rather than giving a statistical inter- 
pretation of it. 

A first (and up to now the only known) attempt to 
give a statistical interpretation of the ~,o formula was 
given by Giacovazzo (1977). The work of Vaughan 
(1958, 1959) should however also be mentioned for 
other formulas than the B3,o formula. In our opinion 
there are many serious objections to Giacovazzo's 
approach. A more detailed discussion of 
Giacovazzo's paper will appear as a short comment 
(Brosius, 1989). 

Our approach will be entirely different. It is based 
on the observation (Brosius, 1978) that the B3,o for- 
mula comes mainly from the average of 
e x p { 2 7 r i [ h . ( x ~ - x t ) + k . ( x j - x t ) ] }  with a suitably 
chosen density function for x,, xj and xt. This forces 
us to 'linearize' the random variable EhEkE_~h+k ). In 
order to control the wrong results caused by this 
linearization we also use three control variables that 
are  N1/2R~, N~/2R~ and NI/2R~+ k. Together with 
EhEkE-~h+k) we shall consider it as the first neighbor- 
hood (a term first used by Hauptman) of our triplet 
EhEkE-~h+k). 

We would like to mention some recent papers con- 
cerning the calculation of the triplet phase invariant 
where one also uses real averages over reciprocal 
space (or part of it), namely Hauptman (1985) and 
Gilmore & Hauptman (1985). 
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O u r  model  

We consider  a structure with N equal atoms with 
space group P1. For any reciprocal-lattice vector h 
the normal ized structure factor Eh can then be written 

N 

Eh = N -1/2 Y~ exp (2~rih. rj) 
j = l  

if the respective atomic posit ion vectors are r l ,  r2, • • • ,  

rN. One then obtains 

EhEkE_(h+k)= N-I/2(R2+ g2+ RE+k--2) 

+ N -'3/2 ~ [Sijt(h, k ) +  Sio(h,k) 
( ijl) 

+ Sj,,(h, k) + Sjli(h, k) 

+ Stu(h, k) + S0,(h, k)], (1) 

where S0t(h, k) = exp {2zri[h. (ri - rt) + k .  (rj - rt)]} 
and where w~l~ means summat ion  over all different 
sets {i, j, l} i #  j, i #  I and l # j .  There are exactly 
M =  N ( N - 1 ) ( N - 2 ) / 6  of such different sets. In 
doing statistics we shall consider  the atomic posit ion 
vectors r l ,  r E , . . . ,  rN as random variables. But it is 
then clear from (1) that  EhEkE-(h+k) is not a sum of 
independent  r andom variables plus a constant  trans- 
lation. This poses a lot of  technical difficulties. So, 
we are led to ' l inearize '  EhEkE-(h+k); more precisely 
we shall take Th.k as a model  for EhEkE-(h+k), where 
Th,k is the random variable 

Th,k---- N-1/E(R2+ g~+ R~+k--2) 

M 

+ N-3/2 E {S,~ (h, k) + S~ (k, h) 
o t = l  

+ S~(h, - h -  k) + S ~ ( - h -  k, h) 

+ S,~ (k, - h -  k) + S~ ( - h -  k, k)}, (2) 

where 

S,~(h,k)=exp[ETri(h.u~+k.v~)], M~- N3/6 
(3) 

and where we suppose that  (u~,v,~),~=l,2 ..... ~ are M 
couples of  independent  r andom variables. Inspect ion 
of  (1) shows that  we may  impose the condi t ion that  
u~, v~ are interatomic vectors. One way to do so is 
to use the density funct ion 

K-lf(u,~)f(v~)f(u,~ -v,~) (4) 

where 

and 

f ( u )  = E ( R 2 - 1 )  exp ( -27r iq .  u) (5) 
q 

K = E (RE--  1)3 (6) 
q 

is chosen to satisfy 

K -1J  ~ du~ dv~f(u~)f(v~)f(u~-v~)  = 1. 

The sum in (5) is a finite sum: we sum over a set A 
of q values such that  the negative ripples of  

Y. ( R ~ -  1) exp ( -2z r iq .  u) 
q e A  

may be neglected. If for some reason these negative 
ripples cannot  be neglected we can use f ( u )  2 instead 
o f f (u ) .  Notice that  f (u )  is not a density funct ion that  
lets u range uniformly over the set of all in teratomic 
vectors which is due to increased Patterson overlap 
when N increases. In principle it is possible to use 
a density function g(u) for which u ranges uniformly 
over all interatomic vectors but we cannot  give an 
analytical expression for g(u). However it may be 
more worthwhile to use such a density funct ion g(u) 
instead of  the simpler version f (u) .  More on this can 
be found in Brosius (1985). 

Our  model  now involves using Th,k as a model  for 
EhEkE-(h+k): every value of EhEkE-(h+k) is also 
at tained by Th.k (but the converse is not true). To put  
it more precisely, let us put Th,k = T e x p  (iq~) and 
EhEkE-(h+k) = RhRkRh+k exp [ i ( q ~ h +  q~k-- ~0h+k)], our  
basic hypothesis  is then that  q~ will p robably  equal 
~0h+ ~0k--q~h+k when T =  RhRkl~+k is large. 

Condi t ional  distr ibutions of q~ based on subsequent  
'ne ighborhoods '  of EhEkE-(h+k) will then force q~ to 
approach q~h+q~k--q~h+k more and more. For con- 
venience, let us put Th = Th,o (this poses no problem 
since Th,k = Tk,h)- AS a first ne ighborhood of  Th,k we 
shall consider,  besides Th,k, the random variables Th, 
Tk, Th+k and we shall impose,  besides the constraint  
]Th k[ = RhRkR,,,+k, the constraints Th = NI/2R2, Tk = 

1/2 2 1/2 2 N '  R k ,  Th+ k - -  N Rh+k- Intuitively it is clear that  
these four constraints strongly couple (a posteriori) 
the different (u~,v~) that  were uncoupled  a priori, 
thereby forcing Th,k to approach  EhEkE-(h+k). So, 
everything comes down to a calculation of  the condi- 
t ional distr ibution 

P(q~l T =  RhRkRh+k, Th---- N1/2R 2, Tk= N1/2R 2, 

Th+ k = NI/2R2+k) 

and to identify q~ with q~h + q~k- q~h+k. For our calcula- 
tions we shall need 

re(h, k) = (exp [2rr i (h .  u~ + k .  v,~)]) 

= K -1 ~ ~ du,~dv~,f(u,~)f(v,~)f(u~,-v,~) 

x exp [27ri(h.  u~ + k .  v,,)] 

-((R2-a)(R2+q-1)(R2+k+q-a))q (7) 
- ( ( R  2 - 1 )3)q 

and 

m ( h )  = re(h,  0) - ( ( R 2 - 1  )2 (R2+q_  1 ))q 
((R 2-1)3)q (8) 

Notice that  our m(h, k) [(7)] appears  in Haup tman ' s  
(1964) renormal ized B3.o formula.  It follows from (7) 
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that -1  <- re(h, k) <- 1. For well randomly distributed 
structures and for N not too high we have 

m(h, k) = N - 3 1 2 R h R k R h + k  COS ( ( p h  q-  ¢Pk - -  ( ~ h + k )  

and re (h) - ' -N-~(R 2 -  1) (Hauptman,  1964). 
For this reason we have simplified the calculations 

that follow by considering m(h, k) to be of order 
N -3 /2  and re(h) to be of order N -~. 

The statistical interpretation of the //,3,0 formula 

Let us put Th.k = T exp (i~), TI = Th, T2 = Tk and 7"~ = 
Th+k. Then the joint distribution P(~p, TI, T2, T3) can 
be written 

P(~, T, T,. T2, T3) 
+oo +co +co 2~r 

--(1/27r)ST p a p  ~ du, ~ du  2 ~ du  3 ~ d0 
0 - c o  - o c  - c o  0 

x exp { - i p T  cos (~p - O) 

- iu~ T~ - iu  2 T 2 -- iu 3 T 3 }  

x exp {ipN -~/2 cos 0 (R~ + R~ + R~+k-- 2) 

- iu , [N '/2+2N '/2(R 2- 1)] 

-iu2[ N '/2 + 2N-U2( R ~ -  1)] 

- iu3[ N '/2 + 2N- ' /2 (  Rl~+k-- 1)]} 

X t~(O,  p ,  I.tl, Ida, U3) M (9) 

where 

q~(O, p, u,,  u2, u3) 

= (exp {2iu~ N-3/2[C0S (2rrh.  u~ ) + cos (27rh. v~) 

+cos  (2rrh.  (u,, - % ) ) ]  

+ 2iu2N-3/2[cos (27rk. u,~) + . . . ]  

+ 2iu3N-3/2{cos [2"n'(h + k) .  u~] + . . . }  

"4- ipN-3/2(cos [27r(h. u,, + k .  v,~) - 0] 

+ . . . + c o s  { 2 7 r [ - ( h + k ) . u , ,  + k  . %] - 0})}). 

(10) 

Let us now define 

A(h, k) = N-'/2(R~,+ R~,+ R~+k-- 2) q- N3/2m(h,k) 

+ AT~[m(k) + m ( h +  k)] 

+ aT2[m(h)+ m(h + k)] 

+ aT3[m(h) + m(k)],  (11) 

• where 

A T~ = N 1/2[ R 2 _ 1 - Nm(h) - (2 /N) (  R2h -- 1 ) ] 

A T 2 = N ~ / 2 [ R [ - 1 - N m ( k ) - ( 2 / N ) ( R [ - 1 ) ]  (12) 

A T3 = Nu2[ R~+k-- 1 -- Nm(h + k ) - ( 2 / N ) (  R2+k- 1)]. 

Assuming that m ( h , k ) = O ( N  -3/2) and rn(h)= 

O ( N  -~) and that ATe, AT2 and AT3 are not too great 
(we propose a maximal bound of 3N 1/2 for IATkl), 
we obtain, after a 'classical' asymptotic development 
of q)(0, p, ul, u2, u3) up to order N -a, the following 
formula correct up to order N -~" 

P ( ~ I T =  RhRkRh+k, T, = N'/2R~,, T2 = NI/2R~,, 

T 3 = N I / 2 R ~ + k )  

oZexp [2RhRkRh+kA(h, k) cos q~]. (13) 

For structures that consist of substructures possessing 
a lot of symmetry our assumptions on m (h, k), m (h), 
IALI, laT21 and laT31 that we made above may not 
be valid. In that case q)(p, 0, u~, u2, u3) should be 
calculated to a larger order than N -~. In order to 
keep the resulting conditional distribution P(~I---)  
as simple as possible it is not reproduced here. 

We would like to make the following remark on 
formula (13). In order not to put wrongly estimated 
cos ~p values on too high a probability level for the 
first neighborhood {Th,k, Th, Tk, Th+k} of Th, k we 
might use a rescaled formula Presc(¢[..-) of the form 
P~e~c(q~l . . . .  ) = [ p(q~[.. .)]k instead of the 'strong' for- 
mula P(~ol...). In order to determine k we shall 
consider the following heuristic argument. The condi- 
tional probability P ( ¢ I T =  RhRkR~+k) of q~ given 
I T~A = RhRkR~+k is approximately given by 

P(~IT = RhRkR.,,+k) 

cCexp [2RhRkRh+kN3/2m(h, k) cos ~p]. (14) 

In the ideal case we have N3/2m(h, k)-~ 
RhRkRh+k COS (q~h+ ~Pk-- Ch+k)" If we then use k = 
(RhRkR~+kNI/2) -~ then P(~o[ T = RhRkRh+k) is put on 
the same level as the well known Cochran-Woolfson 
formula 

P(~I...) oCexp (2N-~/2RhRkRh÷k COS q~). 

So, we propose as rescaled formula of P(~I . . - )  [(13)] 
the formula 

P~.~c(¢l T = RhRkRh+k, T, = N'/2R~, T2 = N'/2R~. 

T3 = NU2 R~,+k) 

= [P(~o] T = RhRkRh+k, 

Ti = N1/2R~,. . . )]  [N'/2RhRkRh÷k]-' 

oCexp [2N-~/2A(h, k) cos ~o]. (15) 

Concluding remarks 

We expect that subsequent neighborhoods of Thk will 
force cos ~o, where ~ = arg (Thk), to move to the correct 
value. We propose that the rescaling should be done 
with the same k=(N~/2RhRkRh+k) -~ to obtain a 
rescaled formula Presc(~[.- . )=  P(~o[ ...)k. Since our 
model provides for covariance terms, the calculations 
should be done more carefully if one uses a larger 
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neighborhood. We suggest that the second neighbor- 
hood of Th,k should consist of the set { Th,k, Th, Tk, 
Th+k, T2h,2k, Th-k, Th,h, Tk,k, Th+k,h+k, T2h, T2k, T2(h+k)}. 
Besides the usual constraints I Th,kl = RhRkRh+k, Th = 
N1/2R~ etc., one must also impose the following con- 
straint: le t  Th,k = T1 e i~', T2h,ek = T2 e i~2, Th,h = T3 e i~3, 
Tk,k = T4 e '~4, Th+k,h+k = 7"5 e'~5; then there exist vari- 
ables ~h, q~k, ~L~h+k, ~2h, (~2k, ~2(h+k) SO that 

~01 ----~ (~h "31- ~t)k- ~h+k 

(~02 = (~2h + (~2k-  ~2(h+k) 

(~3 = 2~Ph -- ~02h 

¢P4 = 2 q g k -  ('P2k 

~5 ---- 2¢ph+k-  ~2(h+k) 

thereby imposing the constraint 

(16) 

(~)3 7t- ~t~4 7t- (~5 = 2~1 - ~2.  (17) 

A similar model can be realized for the quartet. It is 
now clear that the basic quantities would then be 

m(h, k, 1) = K41 ~ f(u~)f(v,~)f(w~)f(u~ -v~ )  

x f (u~  - w~)f(v~ -w~)  

X exp {2zri[h. u~ + k .  v~ + l .  w~]} 

× du,~ dv,~ dw~ 

= [(Aq,Aq2Aq3Aqt+q2+h+k+tAql+q2+qa+k+l 

X Aq! +q3+l)qi ,q2,q3 ] 

× [(Aq,mq2mq3Aq, +q2Aq! +q3Aql +q2-i-qa)q! ,q2,q3] -1 

where Aq -- (R E-  1). 
Let us finally notice that our model can easily be 

combined with additional chemical information if the 
latter is available. 
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Abstract 

Crystallographic refinement based on molecular 
dynamics (MD) has been applied to a 2-5 ~ resolu- 
tion X-ray structure of the pore-forming fragment of 
colicin A. The crystallographic R factor was reduced 
from 48 to 23% with a concomitant improvement in 
stereochemical parameters. The method considerably 
speeded up the refinement process but was associated 
with some pitfalls. In particular, some badly fitted 
segments of the structure required manual rebuilding, 
even after MD refinement and some problems with 
weighting schemes were encountered. Analysis of the 
effects of the refinement and ideas for improvements 
are presented. 
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Introduction 

Crystallographic refinement of macromolecules is a 
laborious and often demanding task requiring exten- 
sive use of human and computing resources. Typi- 
cally, conventional refinement methods require many 
cycles of c.p.u.-intensive computations interspersed 
by sessions of model rebuilding into difference elec- 
tron density maps using interactive computer 
graphics. A major source of difficulty is the non-linear 
relationship between X-ray diffraction data and 
atomic parameters which can cause refinement to 
become trapped in false minima. The radius of con- 
vergence in conventional least-squares methods is 
about a quarter of the minimum Bragg spacing in the 
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